2 research outputs found

    A system architecture, processor, and communication protocol for secure implants

    Get PDF
    Secure and energy-efficient communication between Implantable Medical Devices (IMDs) and authorized external users is attracting increasing attention these days. However, there currently exists no systematic approach to the problem, while solutions from neighboring fields, such as wireless sensor networks, are not directly transferable due to the peculiarities of the IMD domain. This work describes an original, efficient solution for secure IMD communication. A new implant system architecture is proposed, where security and main-implant functionality are made completely decoupled by running the tasks onto two separate cores. Wireless communication goes through a custom security ASIP, called SISC (Smart-Implant Security Core), which runs an energy-efficient security protocol. The security core is powered by RF-harvested energy until it performs external-reader authentication, providing an elegant defense mechanism agai

    Cerebellar control of gait and interlimb coordination

    Get PDF
    Synaptic and intrinsic processing in Purkinje cells, interneurons and granule cells of the cerebellar cortex have been shown to underlie various relatively simple, single-joint, reflex types of motor learning, including eyeblink conditioning and adaptation of the vestibulo-ocular reflex. However, to what extent these processes contribute to more complex, multi-joint motor behaviors, such as locomotion performance and adaptation during obstacle crossing, is not well understood. Here, we investigated these functions using the Erasmus Ladder in cell-specific mouse mutant lines that suffer from impaired Purkinje cell output (Pcd), Purkinje cell potentiation (L7-Pp2b), molecular layer interneuron output (L7-Δγ2), and granule cell output (α6-Cacna1a). We found that locomotion performance was severely impaired with small steps and long step times in Pcd and L7-Pp2b mice, whereas it was mildly altered in L7-Δγ2 and not significantly affected in α6-Cacna1a mice. Locomotion adaptation triggered by pairing obstacle appearances with preceding tones at fixed time intervals was impaired in all four mouse lines, in that they all showed inaccurate and inconsistent adaptive walking patterns. Furthermore, all mutants exhibited altered front–hind and left–right interlimb coordination during both performance and adaptation, and inconsistent walking stepping patterns while crossing obstacles. Instead, motivation and avoidance behavior were not compromised in any of the mutants during the Erasmus Ladder task. Our findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the cerebellar cortex in spatiotemporal control of complex multi-joint movements
    corecore